On quaternionic functional analysis

نویسنده

  • Chi-Keung Ng
چکیده

In this article, we will show that the category of quaternion vector spaces, the category of (both one-sided and two sided) quaternion Hilbert spaces and the category of quaternion B∗-algebras are equivalent to the category of real vector spaces, the category of real Hilbert spaces and the category of real C∗-algebras respectively. We will also give a Riesz representation theorem for quaternion Hilbert spaces and will extend the main results in [12] (namely, we will give the full versions of the Gelfand-Naimark theorem and the Gelfand theorem for quaternion B∗-algebras). On our way to these results, we compare, clarify and unify the term “quaternion Hilbert spaces” in the literatures. 2000 Mathematics Subject Classification: Primary 16D20, 46B04, 46C05, 46L05, 81S99; Secondary 16D90, 46B10, 46B28, 46J10

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Quaternionic Curves in the Semi-Euclidean Space E_4_2

In this study, we investigate the semi-real quaternionic curves in the semi-Euclidean space E_4_2. Firstly, we introduce algebraic properties of semi-real quaternions. Then, we give some characterizations of semi-real quaternionic involute-evolute curves in the semi-Euclidean space E42 . Finally, we give an example illustrated with Mathematica Programme.

متن کامل

Quaternionic Matrices: Inversion and Determinant ∗

We discuss the Schur complement formula for quaternionic matrices, M , and give an efficient method to calculate the matrix inverse. We also introduce the functional D[M ] which extends to quaternionic matrices the non-negative number |det[M ]|. 1. Introduction. Much of the spectral theory of complex matrices does not extend to quaternion matrices without further modifications [1, 2, 3]. In par...

متن کامل

On the Numerical Radius of a Quaternionic Normal Operator

We prove that for a right linear bounded normal operator on a quaternionic Hilbert space (quaternionic bounded normal operator) the norm and the numerical radius are equal. As a consequence of this result we give a new proof of the known fact that a non zero quaternionic compact normal operator has a non zero right eigenvalue. Using this we give a new proof of the spectral theorem for quaternio...

متن کامل

Quaternionic Product of Circles and Cycles and Octonionic Product for Pairs of Circles

This paper concerns with a product of circles induced by the quaternionic product considered in a projective manner. Several properties of this composition law are derived and on this way we arrive at some special numbers as roots or powers of unit. We extend this product to cycles as oriented circles and to pairs of circles by using the algebra of octonions. Three applications of the given pro...

متن کامل

Introducing Quaternionic Gerbes .

The notion of a quaternionic gerbe is presented as a new way of bundling algebraic structures over a four manifold. The structure groupoid of this fibration is described in some detail. The Euclidean conformal group RSO(4) appears naturally as a (non-commutative) monoidal structure on this groupoid. Using this monoidal structure we indicate the existence of a canonical quaternionic gerbe associ...

متن کامل

The quaternionic determinant

The determinant for complex matrices cannot be extended to quaternionic matrices. Instead, the Study determinant and the closely related q-determinant are widely used. We show that the Study determinant can be characterized as the unique functional which extends the absolute value of the complex determinant and discuss its spectral and linear algebraic aspects. 1. Introduction. Quaternionic lin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006